-
آرشیو :
نسخه بهار 1399 - جلد دوم
-
نوع مقاله :
پژوهشی
-
کد پذیرش :
11905
-
موضوع :
مدیریت مالی
-
نویسنده/گان :
سیده اسرا احمدی، مجید سبزه، یاسر کارگری
-
کلید واژه :
بهینهسازی پرتفوی، ریسک، بازار برق، سرمایهگذاران خصوصی.
-
مراجع :
[1] Adcock, T. A., & Draper, S. (2014). Power extraction from tidal channels–multiple tidal constituents, compound tides and overtides. Renewable Energy, 63, 797-806.
[2] Aien, M., Hajebrahimi, A., & Fotuhi-Firuzabad, M. (2016). A comprehensive review on uncertainty modeling techniques in power system studies. Renewable and Sustainable Energy Reviews, 57, 1077-1089.
[3] Allan, G., Eromenko, I., McGregor, P., & Swales, K. (2011). The regional electricity generation mix in Scotland: A portfolio selection approach incorporating marine technologies. Energy Policy, 39(1), 6-22.
[4] Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78-111.
[5] Arnesano, M., Carlucci, A., & Laforgia, D. (2012). Extension of portfolio theory application to energy planning problem–The Italian case. Energy, 39(1), 112-124.
[6] Awerbuch, S., & Berger, M. (2003). Applying portfolio theory to EU electricity planning and policy-making. IEA/EET working paper, 3, 69.
[7] Bhattacharya, A., & Kojima, S. (2012). Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method. Energy Policy, 40, 69-80.
[8] Black, F. (1973). andMyron S. Scholes.“. The Pricing of Options and Corporate Liabilities.” Journal of Political Economy, 81, 637-654.
[9] Boomsma, T. K., Meade, N., & Fleten, S.-E. (2012). Renewable energy investments under different support schemes: A real options approach. European Journal of Operational Research, 220(1), 225-237.
[10] Borenstein, S., Bushnell, J., & Stoft, S. (1997). The competitive effects of transmission capacity in a deregulated electricity industry (0898-2937). Retrieved from
[11] Caramia, M., & Dell´ Olmo, P. (2008). Multi-objective optimization. Multi-objective management in freight logistics: Increasing capacity, service level and safety with optimization algorithms, 11-36.
[12] Cutler, N. J., Boerema, N. D., MacGill, I. F., & Outhred, H. R. (2011). High penetration wind generation impacts on spot prices in the Australian national electricity market. Energy Policy, 39(10), 5939-5949.
[13] Dantzig, G. B., & Infanger, G. (1993). Multi-stage stochastic linear programs for portfolio optimization. Annals of Operations Research, 45(1), 59-76.
[14] David, M., Andriamasomanana, F. H. R., & Liandrat, O. (2014). Spatial and temporal variability of PV output in an insular grid: Case of Reunion Island.
[15] Davoudpour, H., Rezaee, S., & Ashrafi, M. (2012). Developing a framework for renewable technology portfolio selection: A case study at a R&D center. Renewable and Sustainable Energy Reviews, 16(6), 4291-4297.
[16] Delarue, E., De Jonghe, C., Belmans, R., & D'haeseleer, W. (2011). Applying portfolio theory to the electricity sector: Energy versus power. Energy Economics, 33(1), 12-23.
[17] Deng, S.-J., & Oren, S. S. (2006). Electricity derivatives and risk management. Energy, 31(6-7), 940-953.
[18] Deng, S.-J., & Xu, L. (2009). Mean-risk efficient portfolio analysis of demand response and supply resources. Energy, 34(10), 1523-1529.
[19] Dezem, V., & Quiroga, J. (2016). Chile has so much solar energy it’s giving it away for free. In: Bloomberg.
[20] Dixit, A. K., Dixit, R. K., & Pindyck, R. S. (1994). Investment under uncertainty: Princeton university press.
[21] Eydeland, A., & Wolyniec, K. (2003). Energy and power risk management: New developments in modeling, pricing, and hedging (Vol. 206): John Wiley & Sons.
[22] Fernandes, B., Cunha, J., & Ferreira, P. (2011). The use of real options approach in energy sector investments. Renewable and Sustainable Energy Reviews, 15(9), 4491-4497.
[23] Fleten, S.-E., Maribu, K. M., & Wangensteen, I. (2007). Optimal investment strategies in decentralized renewable power generation under uncertainty. Energy, 32(5), 803-815.
[24] Fortin, I., Fuss, S., Hlouskova, J., Khabarov, N., Obersteiner, M., & Szolgayova, J. (2008). An integrated CVaR and real options approach to investments in the energy sector. The Journal of Energy Markets, 1(2), 61-86.
[25] Francés, G. E., Marín-Quemada, J. M., & González, E. S. M. (2013). RES and risk: Renewable energy's contribution to energy security. A portfolio-based approach. Renewable and Sustainable Energy Reviews, 26, 549-559.
[26] Fuss, S., Szolgayová, J., Khabarov, N., & Obersteiner, M. (2012). Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects. Energy Policy, 40, 59-68.
[27] Garcia-Gonzalez, J., de la Muela, R. M. R., Santos, L. M., & Gonzalez, A. M. (2008). Stochastic joint optimization of wind generation and pumped-storage units in an electricity market. IEEE Transactions on Power Systems, 23(2), 460-468.
[28] Glensk, B., & Madlener, R. (2013). Multi-period portfolio optimization of power generation assets. Operations Research and Decisions, 23.
[29] Goh, H. H., Lee, S., Chua, Q., Goh, K. C., Kok, B. C., & Teo, K. (2014). Renewable energy project: Project management, challenges and risk. Renewable and Sustainable Energy Reviews, 38, 917-932.
[30] Gökgöz, F., & Atmaca, M. E. (2012). Financial optimization in the Turkish electricity market: Markowitz's mean-variance approach. Renewable and Sustainable Energy Reviews, 16(1), 357-368.
[31] Gross, R., Blyth, W., & Heptonstall, P. (2008). Investment Electricity generation.
[32] Gross, R., Blyth, W., & Heptonstall, P. (2010). Risks, revenues and investment in electricity generation: Why policy needs to look beyond costs. Energy Economics, 32(4), 796-804.
[33] Hamm, G., & Borison, A. (2006). Forecasting long-run electricity prices. The electricity journal, 19(7), 47-57.
[34] Hoicka, C. E., & Rowlands, I. H. (2011). Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada. Renewable Energy, 36(1), 97-107.
[35] Huisman, R., & Mahieu, R. (2003). Regime jumps in electricity prices. Energy Economics, 25(5), 425-434.
[36] Huisman, R., Mahieu, R., & Schlichter, F. (2009). Electricity portfolio management: Optimal peak/off-peak allocations. Energy Economics, 31(1), 169-174.
[37] Jafarzadeh, M., Tareghian, H. R., Rahbarnia, F., & Ghanbari, R. (2015). Optimal selection of project portfolios using reinvestment strategy within a flexible time horizon. European Journal of Operational Research, 243(2), 658-664.
[38] Jansen, J., Beurskens, L., & Van Tilburg, X. (2006). Application of portfolio analysis to the Dutch generating mix. Reference case and two renewables cases, year 2030, SE and GE scenario. Retrieved from
[39] Jaramillo, O., Venegas-Reyes, E., Aguilar, J., Castrejón-García, R., & Sosa-Montemayor, F. (2013). Parabolic trough concentrators for low enthalpy processes. Renewable Energy, 60, 529-539.
[40] Jerez, S., Trigo, R., Sarsa, A., Lorente-Plazas, R., Pozo-Vázquez, D., & Montávez, J. (2013). Spatio-temporal complementarity between solar and wind power in the Iberian Peninsula. Energy Procedia, 40, 48-57.
[41] Karakatsani, N. V., & Bunn, D. W. (2008). Forecasting electricity prices: The impact of fundamentals and time-varying coefficients. International journal of forecasting, 24(4), 764-785.
[42] Kuki, Á., Nagy, L., Zsuga, M., & Kéki, S. (2011). Fast identification of phthalic acid esters in poly (vinyl chloride) samples by direct analysis in real time (DART) tandem mass spectrometry. International Journal of Mass Spectrometry, 303(2-3), 225-228.
[43] Liu, M., & Wu, F. F. (2007). Portfolio optimization in electricity markets. Electric Power systems research, 77(8), 1000-1009.
[44] Liu, Y., Xiao, L., Wang, H., Dai, S., & Qi, Z. (2013). Analysis on the hourly spatiotemporal complementarities between China’s solar and wind energy resources spreading in a wide area. Science China Technological Sciences, 56(3), 683-692.
[45] Lorca, Á., & Prina, J. (2014). Power portfolio optimization considering locational electricity prices and risk management. Electric Power systems research, 109, 80-89.
[46] Lorenz, E., Hurka, J., Karampela, G., Heinemann, D., Beyer, H. G., & Schneider, M. (2007). Qualified Forecast of ensemble power production by spatially dispersed grid-connected PV systems. Measurement.
[47] Losekann, L., Marrero, G. A., Ramos-Real, F. J., & de Almeida, E. L. F. (2013). Efficient power generating portfolio in Brazil: Conciliating cost, emissions and risk. Energy Policy, 62, 301-314.
[48] Lucia, J. J., & Schwartz, E. S. (2002). Electricity prices and power derivatives: Evidence from the nordic power exchange. Review of derivatives research, 5(1), 5-50.
[49] Madlener, R., & Wenk, C. (2008). Efficient investment portfolios for the Swiss electricity supply sector.
[50] Marathe, R. R., & Ryan, S. M. (2005). On the validity of the geometric Brownian motion assumption. The Engineering Economist, 50(2), 159-192.
[51] Masini, A., & Menichetti, E. (2010). Investment decisions in the renewable energy field: An analysis of main determinants. Paper presented at the PICMET 2010 TECHNOLOGY MANAGEMENT FOR GLOBAL ECONOMIC GROWTH.
[52] Mathuria, P., Bhakar, R., & Li, F. (2015). GenCo's optimal power portfolio selection under emission price risk. Electric Power systems research, 121, 279-286.
[53] McLoughlin, E., & Bazilian, M. (2006). Application of portfolio analysis to the Irish electricity generating mix in 2020. Sustainable Energy Ireland (SEI).
[54] Mills, A. (2010). Implications of wide-area geographic diversity for short-term variability of solar power.
[55] Muñoz, J. I., de la Nieta, A. A. S., Contreras, J., & Bernal-Agustín, J. L. (2009). Optimal investment portfolio in renewable energy: The Spanish case. Energy Policy, 37(12), 5273-5284.
[56] Negara, L. A. (2015). Nasionalisme. Modul Pendidikan dan Pelatihan Prajabatan Golongan III. LAN. https://doi. org/10.1017/CBO9781107415324, 4.
[57] Ortega-Izquierdo, M., & del Río, P. (2016). Benefits and costs of renewable electricity in Europe. Renewable and Sustainable Energy Reviews, 61, 372-383.
[58] Pindoriya, N., Singh, S., & Singh, S. (2010). Multi-objective mean–variance–skewness model for generation portfolio allocation in electricity markets. Electric Power systems research, 80(10), 1314-1321.
[59] Rocha, P., & Kuhn, D. (2012). Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules. European Journal of Operational Research, 216(2), 397-408.
[60] Rohlfs, W., & Madlener, R. (2014). Multi-commodity real options analysis of power plant investments: discounting endogenous risk structures. Energy Systems, 5(3), 423-447.
[61] Rombauts, Y., Delarue, E., & D’haeseleer, W. (2011). Optimal portfolio-theory-based allocation of wind power: Taking into account cross-border transmission-capacity constraints. Renewable Energy, 36(9), 2374-2387.
[62] Roques, F., Hiroux, C., & Saguan, M. (2010). Optimal wind power deployment in Europe—A portfolio approach. Energy Policy, 38(7), 3245-3256.
[63] Roques, F. A., Newbery, D. M., & Nuttall, W. J. (2008). Fuel mix diversification incentives in liberalized electricity markets: A Mean–Variance Portfolio theory approach. Energy Economics, 30(4), 1831-1849.
[64] Ruzika, S., & Wiecek, M. M. (2005). Approximation methods in multiobjective programming. Journal of optimization theory and applications, 126(3), 473-501.
[65] Sadeghi, M., & Shavvalpour, S. (2006). Energy risk management and value at risk modeling. Energy Policy, 34(18), 3367-3373.
[66] Santos-Alamillos, F., Pozo-Vázquez, D., Ruiz-Arias, J., Lara-Fanego, V., & Tovar-Pescador, J. (2012). Analysis of spatiotemporal balancing between wind and solar energy resources in the southern Iberian Peninsula. Journal of applied meteorology and climatology, 51(11), 2005-2024.
[67] Schinko, T., & Komendantova, N. (2016). De-risking investment into concentrated solar power in North Africa: Impacts on the costs of electricity generation. Renewable Energy, 92, 262-272.
[68] Sekar, R. C. (2005). Carbon dioxide capture from coal-fired power plants: a real potions analysis. Massachusetts Institute of Technology,
[69] Shafiee, S., & Topal, E. (2010). A long-term view of worldwide fossil fuel prices. Applied energy, 87(3), 988-1000.
[70] Singh, N., & Mohanty, S. R. (2015). A review of price forecasting problem and techniques in deregulated electricity markets. Journal of Power and Energy Engineering, 3(09), 1.
[71] Sisodia, G. S., Soares, I., & Ferreira, P. (2016). Modeling business risk: The effect of regulatory revision on renewable energy investment-The Iberian case. Renewable Energy, 95, 303-313.
[72] Soroudi, A., & Amraee, T. (2013). Decision making under uncertainty in energy systems: State of the art. Renewable and Sustainable Energy Reviews, 28, 376-384.
[73] Suksonghong, K., Boonlong, K., & Goh, K.-L. (2014). Multi-objective genetic algorithms for solving portfolio optimization problems in the electricity market. International Journal of Electrical Power & Energy Systems, 58, 150-159.
[74] Sunderkötter, M., & Weber, C. (2012). Valuing fuel diversification in power generation capacity planning. Energy Economics, 34(5), 1664-1674.
[75] Szolgayová, J., Fuss, S., Khabarov, N., & Obersteiner, M. (2011). A dynamic CVaR‐portfolio approach using real options: an application to energy investments. European Transactions on Electrical Power, 21(6), 1825-1841.
[76] Tang, S., & John Tang, H. (2003). The variable financial indicator IRR and the constant economic indicator NPV. The Engineering Economist, 48(1), 69-78.
[77] Twomey, P., & Neuhoff, K. (2006). Market power and technological bias: the case of electricity generation.
[78] Vithayasrichareon, P., Riesz, J., & MacGill, I. F. (2015). Using renewables to hedge against future electricity industry uncertainties—An Australian case study. Energy Policy, 76, 43-56.
[79] Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into the future. International journal of forecasting, 30(4), 1030-1081.
[80] White, B. (2007). A mean-variance portfolio optimization of California’s generation mix to 2020: Achieving California’s 33 percent renewable portfolio standard goal. Draft Consultant Report.
[81] Widén, J. (2011). Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE transactions on sustainable energy, 2(2), 177-184.
[82] Widén, J. (2013). Variability and smoothing effects of PV power production. A Lit Surv.
[83] Winkler, J., Gaio, A., Pfluger, B., & Ragwitz, M. (2016). Impact of renewables on electricity markets–Do support schemes matter? Energy Policy, 93, 157-167.
[84] Woo, C.-K., Horowitz, I., Moore, J., & Pacheco, A. (2011). The impact of wind generation on the electricity spot-market price level and variance: The Texas experience. Energy Policy, 39(7), 3939-3944.
[85] Wu, J.-H., & Huang, Y.-H. (2014). Electricity portfolio planning model incorporating renewable energy characteristics. Applied energy, 119, 278-287.
[86] Yang, M., Blyth, W., Bradley, R., Bunn, D., Clarke, C., & Wilson, T. (2008). Evaluating the power investment options with uncertainty in climate policy. Energy Economics, 30(4), 1933-1950.
[87] Yang, M., Patiño-Echeverri, D., & Yang, F. (2012). Wind power generation in China: Understanding the mismatch between capacity and generation. Renewable Energy, 41, 145-151.
[88] Yu, Z. (2003). A spatial mean-variance MIP model for energy market risk analysis. Energy Economics, 25(3), 255-268.
[89] Zhang, M., Zhou, P., & Zhou, D. (2016). A real options model for renewable energy investment with application to solar photovoltaic power generation in China. Energy Economics, 59, 213-226.
[90] Zhang, W.-G., Mei, Q., Lu, Q., & Xiao, W.-L. (2011). Evaluating methods of investment project and optimizing models of portfolio selection in fuzzy uncertainty. Computers & Industrial Engineering, 61(3), 721-728.
[91] Zhu, L., & Fan, Y. (2010). Optimization of China's generating portfolio and policy implications based on portfolio theory. Energy, 35(3), 1391-1402.
- صفحات : 41-67
-
دانلود فایل
( 1.38 MB )